The Gauss-Markov Theorem: OLS i1s BLUE

The Sample Mean is a BLUE estimator

What about OLS? ... Start with those SLR conditions
We’ve Seen This Before!

... Linear Unbiased Estimators (LUES)

... Getting to BLUE

The Gauss-Markov Theorem: OLS =BLUE

e Some Intuition



The Sample Mean is BLUE

Recall our analysis of the Sample Mean estimator (of the mean of the distribution):

We looked at linear unbiased estimators (LUES):

e hbY +bY,+..+bY

n?

where > b =1.

i=1
To find the Best Linear Unbiased Estimator (BLUE), we looked for the particular set of
coefficients {bi } , Which minimized the variance within the group/class of LUEsS.

That amounted to solving the optimization problem: ;10;:2:11\ L

min Var() bY.) =022bi2 subject to Zn:bi =1
i=1

This is a constrained optimization problem, with

solution b’ ~L forani
n

... Which is the Sample Mean: Y = iZYi .
n



What about OLS? Start with those SLR conditions

e Now assume SLR.1-SLR.5 and turn to the challenge of finding the BLUE estimator of the
parameter g, of the linear model: Y = g, + X +U . (We will focus only on estimating the

slope parameter here.)

e The analysis will be conditioned on a particular sample of the x. 's, and so each of the
randomly determined values of the dependent variable will be defined by:

SLR.1: Y, = g, + B x +U., where
SLR.4: E(Y;|x) =/, + X% since E(U, |x)=0,and
SLR.5: Var(Y,) =Var(U,) = c* (homoskedasticity).



We've Seen This Before!: ... LUEs

Consider the following general linear estimator (since we are conditioning on the x. 's, the
estimator will be linear inthe Y,'s): by + > bY,

We require the estimator to be unbiased: E|b, + > bY |=b, +E| > B[, + X +U,1], 50

Elb, + .Y [=b,+4,Y b+ B bx + Y bEU, |x).

But by SLR.4, the conditional means of the U. 's are all 0, and so we require that:

by + B, > 0 + B, bx = B, forall parameter values S, and f, .

This requires that:

o the intercept must be zero: b, =0
o the coefficients must sum to zero: Zbi =0

o the products of the b’s and their respective x’s must sum to one: Zbi X =1.



We've Seen This Before!: ... Getting to BLUE

Challenge Objective Constraints BLUE

b, > b, > b.x

e LT

Estimate 4 | minimize

Var(Y bY )= o2 EE’.—': =0 =1 Sample Mean

Estimate 5 | mimmize _
I:m,[z bY )= o2 E‘b-‘ : =0 =0 =1 OLS Estimator

OLS: To find the BLUE estimator of £, we want to solve the following constrained
optimization problem:

min Var[ 3"bY, | =0 b’ subjectto Y b =0and Y bx =1.

Note the similarity to the Sample Mean BLUE constrained optimization problem:
min Var(Q_ bY )= o-ZZbi2 subjectto » b =1.
i=1

(The objective functions are the same; the constraints differ in number and are slightly different.)



The Gauss-Markov Theorem: OLS i1s BLUE

I’ll skip the details (see the handouts)... but
The envelope, please... And the winner is:
Given SLR.1-5, and conditional on the x’s, the BLUE estimator of f, is:

B 32 T2
B, = ZW \ , where w, = 0 =%)° =X 5§ and >w =1,

(* —x) > (x-%) (-1,

The winner is: The OLS estimator!

Who knew that minimizing SSRs could turn out so well?

(% —X)(y; —Y)
=2 (% -%°

For the given sample, the estimate will be:

OLS is BLUE!




OLS i1s BLUE: Some Intuition

The BLUE optimization problem is: min ¢?) b? st. > b =0and > bx =1.
We can collapse the two constraints into one (see the handout) :

> b(x -X)=>bd =1...where d, =(x -X), i=1..,n

dib,; +d,b, =1 b,
slope =-d, d, ‘\

With this modification, the BLUE optimization problem
becomes

min o?) b’ st. ) (x —X)b =) db =1.

At the optimum: b’ = d_ (% -%)

And so, we have OLS! (Note that the Figure looks
virtually identical to what you saw with the Sample
Mean as BLUE analysis.)




The Gauss-Markov Theorem: OLS i1s BLUE

Onwards to Inference!
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