The Gauss-Markov Theorem: OLS is **BLUE**

- The Sample Mean is a *BLUE* estimator
- What about OLS? ... Start with those SLR conditions
- We've Seen This Before!
- ... Linear Unbiased Estimators (LUEs)
- ... Getting to **BLUE**
- The Gauss-Markov Theorem: OLS = **BLUE**
 - Some Intuition

The Sample Mean is **BLUE**

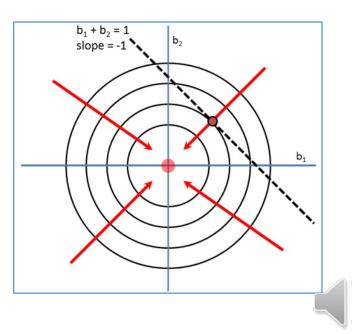
- Recall our analysis of the Sample Mean estimator (of the mean of the distribution):
- We looked at linear unbiased estimators (LUEs):

•
$$b_1Y_1 + b_2Y_2 + \dots + b_nY_n$$
, where $\sum_{i=1}^n b_i = 1$.

- To find the Best Linear Unbiased Estimator (BLUE), we looked for the particular set of coefficients {*b_i*}, which minimized the variance within the group/class of LUEs.
- That amounted to solving the optimization problem:

min
$$Var(\sum b_i Y_i) = \sigma^2 \sum b_i^2$$
 subject to $\sum_{i=1}^n b_i = 1$

- This is a constrained optimization problem, with solution $b_i^* = \frac{1}{n}$ for all i
- ... which is the Sample Mean: $\overline{Y} = \frac{1}{n} \sum Y_i$.



What about OLS? Start with those SLR conditions

- Now assume SLR.1-SLR.5 and turn to the challenge of finding the BLUE estimator of the parameter β_1 of the linear model: $Y = \beta_0 + \beta_1 X + U$. (We will focus only on estimating the slope parameter here.)
- The analysis will be conditioned on a particular sample of the x_i 's, and so each of the randomly determined values of the dependent variable will be defined by:

SLR.1: $Y_i = \beta_0 + \beta_1 x_i + U_i$, where

SLR.4: $E(Y_i | x_i) = \beta_0 + \beta_1 x_i$ since $E(U_i | x_i) = 0$, and

SLR.5: $Var(Y_i) = Var(U_i) = \sigma^2$ (homoskedasticity).

We've Seen This Before!: ... LUEs

- Consider the following general linear estimator (since we are conditioning on the x_i 's, the estimator will be linear in the Y_i 's): $b_0 + \sum b_i Y_i$
- We require the estimator to be unbiased: $E[b_0 + \sum b_i Y] = b_0 + E[\sum b_i [\beta_0 + \beta_1 x_i + U_i]]$, so $E[b_0 + \sum b_i Y] = b_0 + \beta_0 \sum b_i + \beta_1 \sum b_i x_i + \sum b_i E(U_i | x_i).$
- But by SLR.4, the conditional means of the U_i 's are all 0, and so we require that:

 $b_0 + \beta_0 \sum b_i + \beta_1 \sum b_i x_i \equiv \beta_1$, for all parameter values β_0 and β_1 .

- This requires that:
 - the intercept must be zero: $b_0 = 0$
 - the coefficients must sum to zero: $\sum b_i = 0$
 - the products of the b's and their respective x's must sum to one: $\sum b_i x_i = 1$.

We've Seen This Before!: ... Getting to BLUE

Challenge	Objective	Constraints			BLUE
		b_0	$\sum b_i$	$\sum b_i x_i$	
Estimate μ	$\begin{array}{l}\text{minimize}\\ Var(\sum b_i Y_i) = \sigma^2 \sum {b_i}^2 \end{array}$	= 0	= 1		Sample Mean
	minimize $Var(\sum b_i Y_i) = \sigma^2 \sum b_i^2$			= 1	OLS Estimator

OLS: To find the BLUE estimator of β_1 , we want to solve the following constrained optimization problem:

min
$$Var\left[\sum b_i Y_i\right] = \sigma^2 \sum b_i^2$$
 subject to $\sum b_i = 0$ and $\sum b_i x_i = 1$.

Note the similarity to the Sample Mean BLUE constrained optimization problem:

min
$$Var(\sum b_i Y_i) = \sigma^2 \sum b_i^2$$
 subject to $\sum_{i=1}^n b_i = 1$.

(The objective functions are the same; the constraints differ in number and are slightly different.)

The Gauss-Markov Theorem: OLS is **BLUE**

- I'll skip the details (see the handouts)... but: *The envelope, please... And the winner is:*
- Given SLR.1-5, and conditional on the x's, the **BLUE** estimator of β_1 is:

$$B_1 = \sum w_i \frac{(Y_i - \overline{Y})}{(x_i - \overline{x})} \text{, where } w_i = \frac{(x_i - \overline{x})^2}{\sum (x_j - \overline{x})^2} = \frac{(x_i - \overline{x})^2}{(n-1)S_{xx}} \ge 0 \text{ and } \sum w_i = 1.$$

OLS is BLUE!

- The winner is: *The OLS estimator!* Who knew that minimizing SSRs could turn out so well?
- For the given sample, the estimate will be: $\hat{\beta}_i = \sum \frac{(x_i \overline{x})(y_i \overline{y})}{\sum (x_i \overline{x})^2}$.

OLS is **BLUE**: Some Intuition

- The BLUE optimization problem is: min $\sigma^2 \sum b_i^2$ s.t. $\sum b_i = 0$ and $\sum b_i x_i = 1$.
- We can collapse the two constraints into one (see the handout) :

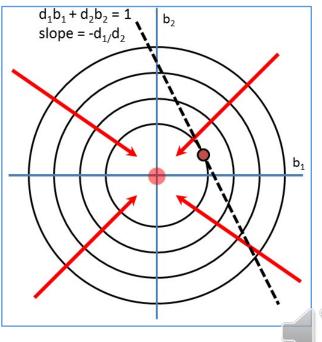
$$\sum b_i \left(x_i - \overline{x} \right) = \sum b_i d_i = 1 \dots \text{ where } d_i = \left(x_i - \overline{x} \right), \ i = 1, \dots, n$$

• With this modification, the BLUE optimization problem becomes

min
$$\sigma^2 \sum b_i^2$$
 s.t. $\sum (x_i - \overline{x}) b_i = \sum d_i b_i = 1$.

• At the optimum: $b_i^* = \frac{d_i}{\sum_{j=1}^n d_j^2} = \frac{\left(x_i - \overline{x}\right)}{\sum_j \left(x_j - \overline{x}\right)^2}$

And so, we have *OLS*! (Note that the Figure looks virtually identical to what you saw with the Sample Mean as BLUE analysis.)



The Gauss-Markov Theorem: OLS is **BLUE**

Onwards to Inference!

